Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Population III (Pop III) stars, the first generation of stars formed from primordial gas, played a fundamental role in shaping the early Universe through their influence on cosmic reionization, early chemical enrichment, and the formation of the first galaxies. However, to date, they have eluded direct detection due to their short lifetimes and high redshifts. The launch of the James Webb Space Telescope (JWST) has revolutionized observational capabilities, providing the opportunity to detect Pop III stars via caustic lensing, where strong gravitational lensing magnifies individual stars to observable levels. This prospect makes it compelling to develop accurate models for their spectral characteristics to distinguish them from other stellar populations. Previous studies have focused on computing the spectral properties of nonrotating, zero-age main-sequence (ZAMS) Pop III stars. In this work, we expand upon these efforts by incorporating the effects of stellar rotation and post-ZAMS evolution into spectral calculations. We use the JWST bands and magnitude limits to identify the optimal observing conditions, both for isolated stars, as well as for small star clusters. We find that, while rotation does not appreciably change the observability at ZAMS, the subsequent evolution can significantly brighten the stars, making the most massive ones potentially visible with only moderate lensing.more » « lessFree, publicly-accessible full text available October 7, 2026
- 
            Free, publicly-accessible full text available March 1, 2026
- 
            With the discovery of gravitational waves (GWs), the disks of Active Galactic Nuclei (AGN) have emerged as an interesting environment for hosting a fraction of their sources. AGN disks are conducive to forming both long and short Gamma-Ray Bursts (GRBs), and their anticipated cosmological occurrence within these disks has potential to serve as an independent tool for probing and calibrating the population of stars and compact objects within them, and their contribution to the GW-detected population. In this study, we employ Monte Carlo methods in conjunction with models for GRB electromagnetic emission in extremely dense media to simulate the cosmological occurrence of both long and short GRBs within AGN disks, while also estimating their detectability across a range of wavelengths, from gamma-rays to radio frequencies. {We investigate two extreme scenarios: “undiffused”, in which the radiation escapes without significant scattering (i.e. if the progenitor has excavated a funnel within the disk), and “diffused”, in which the radiation is propagated through the high-density medium, potentially scattered and absorbed. {In the diffused case,} we find that the majority of detectable GRBs are likely to originate from relatively low redshifts, and from the outermost regions of large supermassive black hole (SMBH) masses, . In the undiffused case, we expect a similar trend, but with a considerable contribution from the intermediate regions of lower SMBH masses. Detectable emission is generally expected to be dominant in prompt -rays if diffusion is not dominant, and X-ray afterglow if diffusion is important; however, the nature of the dominant observable signal highly depends on the specific AGN disk model, hence making GRBs in AGN disks also potential probes of the structure of the disks themselves.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            ABSTRACT The brightest steady sources of radiation in the universe, active galactic nuclei (AGNs), are powered by gas accretion on to a central supermassive black hole (SMBH). The large sizes and accretion rates implicated in AGN accretion discs are expected to lead to gravitational instability and fragmentation, effectively cutting off mass inflow to the SMBH. Radiative feedback from disc-embedded stars has been invoked to yield marginally stable, steady-state solutions in the outer discs. Here, we examine the consequences of this star formation with a semi-analytical model in which stellar-mass black hole (sBH) remnants in the disc provide an additional source of stabilizing radiative feedback. Assuming star formation seeds the embedded sBH population, we model the time-evolving feedback from both stars and the growing population of accreting sBHs. We find that in the outer disc, the luminosity of the sBHs quickly dominates that of their parent stars. However, because sBHs consume less gas than stars to stabilize the disc, the presence of the sBHs enhances the mass flux to the inner disc. As a result, star formation persists over the lifetime of the AGN, damped in the outer disc, but amplified in a narrow ring in the inner disc. Heating from the embedded sBHs significantly modifies the disc’s temperature profile and hardens its spectral energy distribution, and direct emission from the sBHs adds a new hard X-ray component.more » « less
- 
            Abstract The disks of active galactic nuclei (AGNs) are expected to be populated by numerous stars, either formed in the outer regions of the disk via gravitational instability or captured from the nearby nuclear star cluster. Regardless of their formation mechanism, these stars experience altered evolutionary paths, mostly shaped by the accretion of dense disk material. In this study, through the comparison of different timescales, we chart the evolutionary outcomes of these AGN stars as a function of disk radius and across a range of supermassive black hole masses, spanning from 106to 109M⊙, for two popular AGN disk models. We find that in the outer regions of the disk, stars evolve similarly to those in the interstellar medium, but in the inner and denser regions, accretion quickly turns low-mass stars into massive stars, and their fate depends on just how quickly they accrete. If accretion occurs at a faster rate than nuclear burning, they can reach a quasi-steady “immortal” state. If stars accrete faster than they can thermally adjust, runaway accretion occurs, potentially preventing a quasi-steady state and altering the disk structure. During the AGN lifetime, in the regions of the disk that produce massive stars, supernovae (SNe) and gamma-ray bursts (GRBs) may occur within the disk over a wide range of optical depths and ambient densities. Subsequently, in the final phase of the AGN, as the disk becomes depleted, formerly immortal stars will be unable to replenish their fuel, leading to additional SNe and GRBs.more » « lessFree, publicly-accessible full text available February 21, 2026
- 
            Abstract At least three members of the recently identified class of fast luminous blue optical transients show evidence of late-time electromagnetic activity in great excess of what was predicted by an extrapolation of the early time emission. In particular, AT2022tsd displays fast, bright optical fluctuations approximately a month after the initial detection. Here we propose that these transients are produced by exploding stars in black hole binary systems and that the late-time activity is due to the accretion of clumpy ejecta onto the companion black hole. We derive the energetics and timescales involved, compute the emission spectrum, and discuss whether the ensuing emission is diffused or not in the remnant. We find that this model can explain the observed range of behaviors for reasonable ranges of the orbital separation and the ejecta velocity and clumpiness. Close separation and clumpy, high-velocity ejecta result in bright variable emission, as seen in AT2022tsd. A wider separation and smaller ejecta velocity, conversely, give rise to fairly constant emission at a lower luminosity. We suggest that high-cadence, simultaneous, panchromatic monitoring of future transients should be carried out to better understand the origin of the late emission and the role of binarity in the diversity of explosive stellar transients.more » « less
- 
            ABSTRACT The thermal evolution of isolated neutron stars is a key element in unravelling their internal structure and composition and establishing evolutionary connections among different observational subclasses. Previous studies have predominantly focused on one-dimensional or axisymmetric two-dimensional models. In this study, we present the thermal evolution component of the novel three-dimensional magnetothermal code MATINS (MAgneto-Thermal evolution of Isolated Neutron Star). MATINS employs a finite volume scheme and integrates a realistic background structure, along with state-of-the-art microphysical calculations for the conductivities, neutrino emissivities, heat capacity, and superfluid gap models. This paper outlines the methodology employed to solve the thermal evolution equations in MATINS, along with the microphysical implementation that is essential for the thermal component. We test the accuracy of the code and present simulations with non-evolving magnetic fields of different configurations (all with electrical currents confined to the crust and a magnetic field that does not thread the core), to produce temperature maps of the neutron star surface. Additionally, for a specific magnetic field configuration, we show one fully coupled evolution of magnetic field and temperature. Subsequently, we use a ray-tracing code to link the neutron star surface temperature maps obtained by MATINS with the phase-resolved spectra and pulsed profiles that would be detected by distant observers. This study, together with our previous article focused on the magnetic formalism, presents in detail the most advanced evolutionary code for isolated neutron stars, with the aim of comparison with their timing properties, thermal luminosities and the associated X-ray light curves.more » « less
- 
            Abstract Nuclear star clusters (NSCs), made up of a dense concentration of stars and the compact objects they leave behind, are ubiquitous in the central regions of galaxies surrounding the central supermassive black hole (SMBH). Close interactions between stars and stellar-mass black holes (sBHs) lead to tidal disruption events (TDEs). We uncover an interesting new phenomenon: for a subset of these, the unbound debris (to the sBH) remains bound to the SMBH, accreting at a later time, thus giving rise to a second flare. We compute the rate of such events and find them ranging within 10−6–10−3yr−1gal−1for SMBH mass ≃106–109M⊙. Time delays between the two flares spread over a wide range, from less than a year to hundreds of years. The temporal evolution of the light curves of the second flare can vary between the standardt−5/3power law to much steeper decays, providing a natural explanation for observed light curves in tension with the classical TDE model. Our predictions have implications for learning about NSC properties and calibrating its sBH population. Some double flares may be electromagnetic counterparts to LISA extreme-mass-ratio inspiral sources. Another important implication is the possible existence of TDE-like events in very massive SMBHs, where TDEs are not expected. Such flares can affect spin measurements relying on TDEs in the upper SMBH range.more » « less
- 
            Abstract The astrophysical origin of stellar-mass black hole (BH) mergers discovered through gravitational waves (GWs) is widely debated. Mergers in the disks of active galactic nuclei (AGNs) represent promising environments for at least a fraction of these events, with possible observational clues in the GW data. An additional clue to unveil AGN merger environments is provided by possible electromagnetic emission from postmerger accreting BHs. Associated with BH mergers in AGN disks, emission from shocks emerging around jets launched by accreting merger remnants is expected. Here we compute the properties of the emission produced during breakout and the subsequent adiabatic expansion phase of the shocks, and we then apply this model to optical flares suggested to be possibly associated with GW events. We find that the majority of the reported flares can be explained by breakout and shock cooling emission. If the optical flares are produced by shock cooling emission, they would display moderate color evolution, possibly color variations among different events, and a positive correlation between delay time and flare duration and would be preceded by breakout emission in X-rays. If the breakout emission dominates the observed lightcurve, we predict the color to be distributed in a narrow range in the optical band and the delay time from GW to electromagnetic emission to be longer than ∼2 days. Hence, further explorations of delay time distributions, flare color evolution, and associated X-ray emission will be useful to test the proposed emission model for the observed flares.more » « less
- 
            ABSTRACT Tidal disruption events (TDEs) are routinely observed in quiescent galaxies, as stars from the nuclear star cluster are scattered into the loss cone of the central supermassive black hole (SMBH). TDEs are also expected to occur in active galactic nuclei (AGNs), due to scattering or orbital eccentricity pumping of stars embedded in the innermost regions of the AGN accretion disc. Encounters with embedded stellar-mass black holes (BH) can result in AGN μTDEs. AGN TDEs and μTDEs could therefore account for a fraction of observed AGN variability. Here, by performing scattering experiments with the few-body code SpaceHub, we compute the probability of AGN TDEs and μTDEs as a result of 3-body interactions between stars and binary BHs. We find that AGN TDEs are more probable during the early life of the AGNs, when rates are $$\sim (6\times 10^{-5}-5 \times 10^{-2}) (f_\bullet /0.01)\, \rm {AGN}^{-1}$$ yr−1 (where f• is the ratio between the number density of BHs and stars), generally higher than in quiescent galactic nuclei. By contrast, μTDEs should occur throughout the AGN lifetime at a rate of $$\sim (1\times 10^{-4} - 4\times 10^{-2})(f_\bullet /0.01)\, \rm {AGN}^{-1}$$ yr−1. Detection and characterization of AGN TDEs and μAGN TDEs with future surveys using Rubin and Roman will help constrain the populations of stars and compact objects embedded in AGN discs, a key input for the LVK AGN channel.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
